Stress and Reliability for 3D Interconnects

Tengfei Jiang, Jay Im, Rui Huang and Paul S. Ho
The University of Texas at Austin

FCMN 2015, Dresden

CMOS and BEOL Scaling Challenges

- Conventional CMOS scaling continues
 - More difficult
 - More expensive
- Interconnects dominating chip energy and performance, not transistors!

Source: Qualcomm

Benefits of 3D Integration

Solution for mobile system and bandwidth requirement

- Smaller form factor
- Better performance
- Lower power consumption
- Wider bandwidth
- Lower cost
- Heterogeneous integration

Lu et al., 2007

Thermo-Mechanical Reliability for 3D Integration

Via Middle Process:

- CTE mismatch: thermal stress in/around Cu TSV.
 - $\alpha_{Cu} = 17 \text{ppm/K}, \alpha_{Si} = 2.3 \text{ppm/K}$

Source:TI, Samsung, Qualcomm

Outline

- Thermo-mechanical Reliability of TSVs
 - TSV Stress Characteristics
 - Local Plasticity and Via Extrusion
- Effect of Microstructure and Extrusion Statistics
- Synchrotron study of die-stack structures
- An Approach to Reduce Via Extrusion

2D Stress Solution of Single TSV

 2D stresses controlled by CTE mismatch between Cu and Si.

Tri-Axial Stress State and Near Surface Stress

- TSV confined by surrounding Si distinct characteristics.
- Stress and materials characterization
 - Substrate curvature, μ-Raman.
 - EBSD, TOF-SIMS, Nanoindentation, Synchrotron x-ray microdiffraction.

Thermo-Mechanical Behavior of TSVs

In situ measurement of material behaviors during thermal cycling.

Curvature-Temperature Behavior of TSVs

Localized plasticity

- Nonlinear behavior in heating, linear behavior during cooling.
- Stress-free temperature determined.
- Tri-axial stress state local plasticity.

TSV Curvature Behavior: Tri-axial Stress State

TSV stress increased with thermal cycling → residual stress.

Microstructure Evolution and Stress Accumulation

- Out-diffusion of additives during grain growth.
- Grain growth \rightarrow accumulation of residual stress.

Correlation with Micro-Raman

Strain in Si → Raman frequency change.

$$\sigma_r + \sigma_\theta \text{ (MPa)} = -470\Delta\omega_3 \text{ (cm}^{-1})$$

- Annealing reset stress-free temperature.
- Change of residual stress at RT.
- Correlation by FEA.

Correlation with Micro-Raman

• Strain in Si → Raman frequency change.

$$\sigma_r + \sigma_\theta \text{ (MPa)} = -470\Delta\omega_3 \text{ (cm}^{-1})$$

- Annealing reset stress-free temperature.
- Change of residual stress at RT.
- Correlation by FEA.

Local Plasticity and Via Extrusion

White Beam Scanning X-ray Microdiffraction (µSXRD)

Laue Peak

 Peak shapes provide information on plastic deformation and dislocation distribution in the diffracted volume.

Tamura, 2008.

Local Plasticity in TSVs

- Average peak width (APW): peak broadening.
- Local plasticity near top of TSV.

Via Extrusion

 Via extrusion show correlation to local plasticity (APW).

Via Extrusion

- Irrecoverable deformation → Via extrusion
 - Grain growth (indirect)
 - Dislocation glide
 - Diffusional creep

- High T: mass transport occurred.
- Low T: plasticity occurred.

• In situ measurement to elucidate inelastic process.

Modeling of Extrusion

- Via extrusion increases with Tmax (beyond a critical T).
- Increasing yield strength of Cu and interfacial adhesion would help reduce via extrusion.

Material Property-Extrusion

$$\sigma_{y} = \sigma_{o} + \frac{k_{y}}{\sqrt{d}}$$

 Controlling the Cu grain size to reduce via extrusion by optimizing the post-plating anneal.

Statistics of Via Extrusion

Post-plating (pre-CMP) annealing introduced in via-middle process

- Improve extrusion by stabilizing grain structure and stress state.
- Not effective in statistics of extrusion (weakest link).
- Grain structure near via top and diffusion.

Largest extrusion (0.1%) determine BEOL integrity and reliability

De Messemaeker et al., 2013, 2014

Grain Structure Effect on Via Extrusion

- Suppress diffusion (Interface, grain boundary)
 - Good adhesion at the interface. (via etch, oxide/liner/seed)
 - Twin boundary.

- Cannot reduce distribution due to the worst case.
- The weakest link in statistic distribution important.

FEA of Die Stacks

- 2D plane strain FEA model
 - Symmetry at package center
 - fix bottom right corner.
 - Solder bump placement is approximated
- Consider die stacking process
 - Substrate: 100°C-RT
 - Chip: 210°C-RT
- Underfill cure: 160°C-RT

Components	Initial Step - I
Si/TSV/μ- bump/Solder	210°C 25°C
Underfill	160°C 25°C
Substrate	100°C 25°C

FEA vs Experiments

- FEA shows Von Mises stress increase from top to bottom (DRAM7 to DRAM 0)
- Trend from FEA is consistent with measurement, but the stress magnitude is smaller.
- FEA is underestimating stress level and the crack driving ERR.

Summary

- TSV characterized by substrate curvature, µ-Raman, EBSD, TOF-SIMS, Nanoindentation, synchrotron x-ray microdiffraction.
- TSV stress characteristics
 - Tri-axial stress state.
 - Accumulation of residual stress with grain growth and increased T.
 - Localized plasticity.
- Via extrusion
 - Local plasticity mechanism.
 - Cap layer to reduce extrusion.

Acknowledgements

- UT Interconnect and Packaging Group
- PI: Prof. Paul S. Ho
- · Collaborator: Prof. Rui Huang

Thank you!

Through-Silicon Via (TSV)-based 3D Integration

• Stacking chips in z direction.

Through-silicon via (TSV): vertical interconnection between stacked dies